
58 The Delphi Magazine Issue 63

Come Together
This month we look at sorting large files

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

There’s a newsgroup I frequent
on a regular basis which is so

secret that if you discovered its
address from me I’d have to kill
you. It’s populated by Delphi pro-
grammers whose opinions seem
perpendicular to each other. Flame
wars burn bright then die. Every
now and then, though, there’s a
message which stops me in my
tracks and makes me realise I will
continue to have a job writing
about algorithms into the far
future. There may be some truly
amazing Delphi programmers out
there, but sometimes their knowl-
edge about the basics of computer
science and our professional foun-
dations is sadly lacking. So, stick
with me and we’ll learn together.

The latest message went a little
like this (paraphrased to protect
the innocent and extract the essen-
tial details): ‘I needed to sort a file
containing fixed length ASCII
records. The file is 100Mb in size. I
tried reading it into a sorted string
list but after several hours I killed
the program, as it didn’t seem to be
doing anything except grind my
disk drive to dust. I then tried vari-
ous data structures, linked lists
and binary search trees in particu-
lar, and again the process was
taking so long I killed it. Finally, in
desperation, I dug out an old copy
of Turbo Database Toolbox
because I remembered it had a sort
facility, converted it from DOS
Pascal to 32-bit Delphi and used
that.’

For those newbies amongst you
who might never have heard of it,
Turbo Database Toolbox was an
implementation of a B-tree written
for Turbo Pascal (one version
appeared with Turbo Pascal 2, and
it was updated for Turbo Pascal 3
and later). Essentially, it enabled
you to write database applications
by implementing a file system with
index files. TurboPower’s B-Tree
Filer was a drop-in replacement
with extra functionality, and it was
because of my intimate knowledge

of this latter product that I man-
aged to get a job here over seven
years ago.

Anyway, enough of the history.
Database Toolbox had an imple-
mentation of a mergesort that
enabled you to sort very large files
very quickly and it was this code
that my correspondent had ported
and converted to Delphi 5. In this
article, then, we’ll talk about
mergesort.

Yesterday
Way back in Issue 37 (September
1998), I discussed various sorting
algorithms, ending up with quick-
sort. Quicksort is important
because it is an O(nlogn) algo-
rithm: its speed is proportional to
the number of items multiplied by
the log of the number of items.
There are a couple of other
O(nlogn) algorithms: heapsort
(discussed in Issue 39) and
mergesort, the subject of this arti-
cle. (If you don’t have the old
issues, I recommend getting the
Collection 2000 CD-ROM.)

Quicksort has an infuriating
problem: although in the general
case the algorithm is extremely
fast, there are other cases where
the algorithm deteriorates into an
O(n2) process. Sometimes predict-
ing this deterioration can be
extremely hard. In Issue 37 I dis-
cussed various ways we could get
around this problem: the median-
of-three partitioning method and
using an insertion sort if the parti-
tions were small enough. Neither
heapsort nor mergesort suffer
from this problem: they are
O(nlogn) algorithms no matter
what type of input data is fed to
them. Mergesort has another
important quality that makes it an
important algorithm to master: it
can be extended to efficiently sort
data that cannot be fitted into
memory. In other words, it is the
algorithm of choice when you have
to sort very large files. In this guise
it is known as an external sort.

If you read old algorithms books,
you’ll find that mergesort is intro-
duced in a peculiar fashion and,
indeed, this is how I first met it. In
these old books, it’s always used to
solve the problem of sorting data
stored on tape when you don’t
have much main memory. Even
when I wanted to use it the first
time, tapes were only used for
backup purposes and it took me a
while to convert it to work with
disk files.

Help!
If you think about it for a moment,
you’ll see that sorting a file that
can’t be read into memory is going
to be a completely different animal
to sorting a set of data that com-
pletely resides in memory. The
reason is the time needed to read
the data out of the file. This time is
a complex function of the seek time
(the time taken to move the disk’s
read/write head to the correct
track on the disk), the latency time
(the time taken in waiting for the
correct sector to move under the
read/write head as the disk platter
spins), and the transfer time (the
time taken to read the data from
the disk into main memory). On a
modern machine, this all seems to
be instantaneous, but in reality it
isn’t: the CPU can do an awful lot of
work whilst waiting for the data to
arrive in memory from a read
request. In practice, you can easily
sort a block of data in the same
time it takes to read the block off
the disk. So an external sort has to
worry about making sure that the
use of the disk hardware is
optimised; indeed, some of the
more sophisticated sort variants

November 2000 The Delphi Magazine 59

make use of temporary files on
different disks.

Of course, this process of read-
ing a file also has an unknown com-
ponent: the operating system. It
may, in its wisdom, read blocks in
advance of you requiring them.
With Windows you can even give a
hint to the system that this is how
you want things to happen: you can
state that you are going to read the
file sequentially and the operating
system will then stream the data in
as you are using it.

So, mergesort, then. The idea
behind this algorithm is to orga-
nize the file into larger and larger
runs of records. A run of records is
a set of records of some size that
are sorted into order. We trivially
assume that the original file is
organized into runs of one record
(this is trivial in the sense that a
run of one record is automatically
sorted). We then organize the file
into runs of two records, then into
runs of four records, then into runs
of eight, and so on, moving up the
powers of two. Eventually, we will
reach a power of two that is greater
than the number of records in the
file, and at that point the file as a
whole is then obviously sorted.
This algorithm is usually known as
the bottom-up mergesort.

An important point about
bottom-up mergesort is this: we do
not sort the file in situ. At the end of
the mergesort algorithm, we will
still have the original file extant,
together with a file containing all
the same records but in sorted
order. During the sorting process,
at the end of each stage of creating
longer runs of sorted records, we
will have three complete copies of
the data, the original plus two
others. So, if we had a 100Mb file as
in my correspondent’s example we
would require a further 200Mb to
efficiently sort the file.

In practice we make use of four
ancillary files, each of which will
contain roughly half the records
during the mergesort process. At
the end of the algorithm, one of
these files will contain all the
records, sorted in order; the
others will be empty.

What Goes On
The first step is to read through the
original file (which, if you remem-
ber, contains runs of 1 record),
retrieving records in pairs. The
first pair of records is written to
temporary file F1 in order (forming
a run of length 2), the second pair
of records is written to temporary
file F2 in order (again a run of
length 2). The third pair of records
is written to F1 again, the fourth
pair to F2, and we continue like
this, alternating between F1 and F2

until we have processed all the
records.

After this first step we have two
files, F1 and F2, containing runs of
records of length 2.

The next step is to take these
two files F1 and F2 and read
records from them and create runs
of length 4 in files G1 and G2. We
read a record from F1 and one from
F2, compare them and write the
smaller to G1. If the record written
was from F1, read another record
from F1, otherwise read the next
from F2. Compare the record we
haven’t written with the one we
just read, and write the smaller one
to G1. At this point we will have
exhausted a run from one of F1 or
F2 (in other words, we’ll have read
two records from one of these
files) and therefore we can write
the other two records to G1. We
have created a run of 4 records in
G1. Now we do the same with the
next two runs from F1 and F2, but
we write the run of 4 to G2. After
this, we continue writing runs of 4
to G1 and G2 alternately until
we’ve read through F1 and F2.

We now reset files F1 and F2 so
that we start writing records from
the beginning. We take the first
runs of 4 from G1 and G2 and
create a run of 8 in F1. The next two
runs of 4 are merged into a run of 8
into F2, and then the next two runs
of 4 are merged into a run of 8 in F1,
and so on, so forth.

function ReadRecFixed(aStream : TStream; var aBuffer;
aRecLen : integer) : boolean;

var
BytesRead : longint;

begin
BytesRead := aStream.Read(aBuffer, aRecLen);
Result := BytesRead = aRecLen;

end;
procedure SplitFileFixed(aInFile : TStream; aF1 : TStream;
aF2 : TStream; aRecLen : integer;
aCompare: TaaMergeCompare);

const
FirstFile = false;
SecondFile = true;

var
Rec1 : pointer;
Rec2 : pointer;
F : array [boolean] of TStream;
Have1st : boolean;
Have2nd : boolean;
Use1st1st : boolean;
DestFile : boolean;

begin
F[FirstFile] := aF1;
F[SecondFile] := aF2;
Rec1 := nil;
Rec2 := nil;
try
{allocate the record buffers}
GetMem(Rec1, aRecLen);
GetMem(Rec2, aRecLen);
{we start out with the first output file}
DestFile := FirstFile;
{read the first two records}

Have1st := ReadRecFixed(aInFile, Rec1^, aRecLen);
Have2nd := ReadRecFixed(aInFile, Rec2^, aRecLen);
{in a loop read the records in pairs and write them in
sequence to the output file, alternating between
output files; the loop stops when we can't read any
more records}

while Have1st do begin
{order the two records}
if Have2nd then
Use1st1st := aCompare(Rec1, Rec2) <= 0

else
Use1st1st := true;

{write them out in order to the current output file}
if Use1st1st then begin
F[DestFile].WriteBuffer(Rec1^, aRecLen);
if Have2nd then
F[DestFile].WriteBuffer(Rec2^, aRecLen);

end else begin
F[DestFile].WriteBuffer(Rec2^, aRecLen);
F[DestFile].WriteBuffer(Rec1^, aRecLen);

end;
{switch output files}
DestFile := not DestFile;
{read the next two records}
Have1st := ReadRecFixed(aInFile, Rec1^, aRecLen);
Have2nd := ReadRecFixed(aInFile, Rec2^, aRecLen);

end;
finally
if (Rec2 <> nil) then
FreeMem(Rec2);

if (Rec1 <> nil) then
FreeMem(Rec1);

end;
end;

➤ Listing 1: SplitFileFixed
splits the input stream
into two output streams.

60 The Delphi Magazine Issue 63

This all seems a little wishy-
washy, so let’s be more practical.
Like last time we’ll use some cards
to illustrate the algorithm. Extract
out all the hearts from a deck of
cards, shuffle and deal them into a
line.

This is our original row, a typical
shuffling of the hearts:

5 A 8 J 2 3 Q 6 K 4 9 10 7

Now we perform our first pass and
separate the cards into two rows
containing runs of 2. Reading from
the left, we pick the cards up in
pairs, order them and then put
them down in two rows,
alternating between the rows:

F1: A 5 | 2 3 | 4 K | 7
F2: 8 J | 6 Q | 9 10

(For ease of reading the runs, I
have separated them with | char-
acters). Now we move to the
second process: continually merg-
ing these runs into longer and
longer runs, alternating between
rows.

Pick up the Ace and the 8. The
Ace is smaller and hence gets
placed into the G1 row. Pick up the
5 from F1 (we’ve now exhausted
that particular run). It is less than
8, so it gets placed in the G1 row.
We’ve no more cards in the current
F1 run, so we merely place the 8 fol-
lowed by the Jack in the G1 row.
Now we switch to the G2 row, and
do the same with both the next
runs from F1 and F2. We continue
like this until we reach:

G1: A 5 8 J | 4 9 10 K
G2: 2 3 6 Q | 7

We now have to merge the first two
runs of 4 from G1 and G2 into a run
of 8 in the F1 row. The next two
runs are merged into G2 and so on.
This penultimate pass produces
runs of 8 like this:

F1: A 2 3 5 6 8 J Q
F2: 4 7 9 10 K

The final merge tries to produce
runs of 16, but of course there are
only 13 cards and so one of the
rows becomes empty with all the
cards in the other row:

G1: A 2 3 4 5 6 7 8 9 10 J Q K
G2:

Row G1 contains the sorted cards.

function MergeRunsFixed(aF1 : TStream; aF2 : TStream;
aG1 : TStream; aG2 : TStream; aRecLen : integer;
aRunLen : integer; aCompare: TaaMergeCompare) : boolean;

const
FirstFile = false;
SecondFile = true;

type
{record that describes processing of a single input file}
TInputFile = packed record
ifStrm : TStream; {stream}
ifRec : pointer; {record buffer}
ifRecsInRun : integer; {records to go in run}
ifEOF : boolean; {stream is exhausted}

end;
var
F : array[boolean] of TInputFile;
G : array [boolean] of TStream;
SrcFile : boolean;
DestFile : boolean;
FileId : boolean;

begin
{assume that this merge pass will finish completely}
Result := true;
{initialize the input file records}
with F[FirstFile] do begin
ifStrm := aF1;
ifRec := nil;
ifRecsInRun := 0;
ifEOF := false;

end;
with F[SecondFile] do begin
ifStrm := aF2;
ifRec := nil;
ifRecsInRun := 0;
ifEOF := false;

end;
{set up the output files}
G[FirstFile] := aG1;
G[SecondFile] := aG2;
try
{clear the output streams}
{NOTE: this only works for Delphi 3 and above, since
only their TStreams have a SetSize accessor method}

G[FirstFile].Size := 0;
G[SecondFile].Size := 0;
{reset the input streams, allocate the record buffers,
and set the EOF flags}

for FileId := FirstFile to SecondFile do
with F[FileId] do begin
ifStrm.Seek(0, soFromBeginning);
GetMem(ifRec, aRecLen);
ifEOF := ifStrm.Size = 0;

end;
{make sure the first output goes to G1}
DestFile := FirstFile;
{cycle until we manage to exhaust both input files}
while (not F[FirstFile].ifEOF) or

(not F[SecondFile].ifEOF) do begin
{if we start writing to the second file, we won't
finish the merge process this time}

if (DestFile = SecondFile) then
Result := false;

{initialize ready for merging next runs}
F[FirstFile].ifRecsInRun := aRunLen;
F[SecondFile].ifRecsInRun := aRunLen;
{read the first two records in the respective runs}
with F[FirstFile] do
if ReadRecFixed(ifStrm, ifRec^, aRecLen) then
dec(ifRecsInRun)

else begin
ifRecsInRun := -1;
ifEOF := true;

end;
with F[SecondFile] do
if ReadRecFixed(ifStrm, ifRec^, aRecLen) then
dec(ifRecsInRun)

else begin
ifRecsInRun := -1;
ifEOF := true;

end;
{merge the two runs, one from F1 the other from F2}
while ((F[FirstFile].ifRecsInRun >= 0) or

(F[SecondFile].ifRecsInRun >= 0)) do begin
{find the smaller record of the two current ones}
{if the run from F1 is exhausted then the record
from F2 is the 'smaller'}

if (F[FirstFile].ifRecsInRun < 0) then
SrcFile := SecondFile

{if the run from F2 is exhausted then the record
from F1 is the 'smaller'}

else if (F[SecondFile].ifRecsInRun < 0) then
SrcFile := FirstFile

{otherwise we need to actually compare the records
to find the smaller}

else
SrcFile := aCompare(F[FirstFile].ifRec,

F[SecondFile].ifRec) > 0;
{write smaller record to current output file}
G[DestFile].WriteBuffer(F[SrcFile].ifRec^, aRecLen);
{read the next record from the file whose record
we just used}
with F[SrcFile] do
if (ifRecsInRun <= 0) then
ifRecsInRun := -1

else if ReadRecFixed(ifStrm, ifRec^, aRecLen) then
dec(ifRecsInRun)

else begin
ifRecsInRun := -1;
ifEOF := true;

end
end;
{having merged two runs, switch output files}
DestFile := not DestFile;

end;
finally
if (F[SecondFile].ifRec <> nil) then
FreeMem(F[SecondFile].ifRec);

if (F[FirstFile].ifRec <> nil) then
FreeMem(F[FirstFile].ifRec);

end;
end;

➤ Listing 2: MergeRunsFixed
merges two input streams
into two output streams.

November 2000 The Delphi Magazine 61

Tomorrow Never Knows
Looks pretty simple explained like
this, but when writing the imple-
mentation the devil is in the
details. The first process is to take
the original file and to split it into
two separate files, each containing
runs of length 2. This is the pur-
pose of the SplitFileFixed routine
in Listing 1. As you can see we read
the input file (here implemented as
an instance of a stream) record by
record into two buffers. We com-
pare the two buffers by use of an
external comparison routine and
then write the smaller of the two to
the output stream, followed by the
larger. We then switch output
streams. We continue this process
until we have read all the records
in the input file and have written
them all to the two output files.

I make use of an ancillary routine
called ReadRecFixed here to read a
record, and to return true if the
record was read, or false if the end
of the stream was reached. This
makes the code in SplitFileFixed a
little easier to read.

The second process is to merge
two files of run length x into two
files of run length 2x. We shall
repeatedly call this routine, the
first time with x= 2, until we have
completely sorted the data. This

process is shown by the
MergeRunsFixed routine in Listing 2.
It’s more complex than SplitFile-
Fixed mainly because we have to
make sure we don’t read beyond
the end of a run when we’re merg-
ing runs. In other words, should we
be merging two runs of length 2, we
don’t want to read a third record
from one of the files. Of course, we
may also reach end-of-file when
we’re reading records as well, so
we should cater for that as well
(and of course reaching end-of-file
also means reaching the end of a
run).

MergeRunsFixed has another
important function as well: it
returns a Boolean value that states
whether the records have all been
merged into one output file, leav-
ing the other empty. This is the
signal to the caller that all the
records have been sorted and that
the mergesort is complete. This is
simple enough to determine: if no
records are written to the second
output file during a call to
MergeRunsFixed, the records have
been completely merged and
hence sorted.

Now we can bring the two rou-
tines together in a driver routine
that performs the complete
mergesort operation on a given
input file to produce a sorted
output file. Listing 3 shows this
procedure. It takes the names of

two files, the input file and the
output file, and the length of the
fixed length records contained in
the input file. From this it creates
the necessary streams, calls
SplitFileFixed to start the whole
process off, and then repeatedly
calls MergeRunsFixed until the
records are all sorted in one
stream. It then renames this final
output stream to the required file
name.

I tested the efficiency of this rou-
tine on my home machine. I cre-
ated a 25.6Mb input file containing
400,000 64-byte random records
containing uppercase ASCII char-
acters. I then sorted these records.
It took 280 seconds (4.7 minutes).
Not bad. Now, agreed, on my home
machine I could probably have
read this file into memory in one
block, used quicksort on it and
then written it out, but we’re after
experience with the algorithm.

I Should Have Known Better
This is pretty good, but is there
anything we can do to improve
matters? Well, the first point to
make is much the same as one we
made with the original quicksort:
for small sequences of data, since
there are an awful lot of them, it’s
better to use a different technique.
For bottom-up mergesort this
translates into two distinct
improvements.

procedure aaMergesortFixed(const aInFile : string;
const aOutFile : string; aRecLen : integer;
aCompare : TaaMergeCompare);

var
InFile : TFileStream;
F : array [1..2] of TaaTempFileStream;
G : array [1..2] of TaaTempFileStream;
Merged : boolean;
FIsSrc : boolean;
RunLen : integer;
Path : string;
MergedFileName : string;

begin
InFile := nil;
F[1] := nil;
F[2] := nil;
G[1] := nil;
G[2] := nil;
try
{open the file to be sorted}
InFile := TFileStream.Create(aInFile,
fmOpenRead+fmShareDenyWrite);

{split the file into the first two file components}
Path := ExtractFilePath(aOutFile);
{split the input file into two files containing runs of
length 2}

F[1] := TaaTempFileStream.Create(Path, fmOpenReadWrite);
F[2] := TaaTempFileStream.Create(Path, fmOpenReadWrite);
SplitFileFixed(InFile, F[1], F[2], aRecLen, aCompare);
RunLen := 2;
{perform the first merge pass}
G[1] := TaaTempFileStream.Create(Path, fmOpenReadWrite);
G[2] := TaaTempFileStream.Create(Path, fmOpenReadWrite);
Merged := MergeRunsFixed(F[1], F[2], G[1], G[2],
aRecLen, RunLen, aCompare);

{now we continually merge the runs until we end up with
a single file containing all the records}

FIsSrc := true;
while not Merged do begin
RunLen := RunLen * 2;
FIsSrc := not FIsSrc;
if FIsSrc then
Merged := MergeRunsFixed(F[1], F[2], G[1], G[2],
aRecLen, RunLen, aCompare)

else
Merged := MergeRunsFixed(G[1], G[2], F[1], F[2],
aRecLen, RunLen, aCompare);

end;
{we've now merged all records into either F1 or G1;
rename file containing all records to output file
name, and then delete the other three temporaries}

if FIsSrc then begin
MergedFileName := G[1].FileName;
F[1].DeleteOnDestroy := true;

end else begin
MergedFileName := F[1].FileName;
G[1].DeleteOnDestroy := true;

end;
F[2].DeleteOnDestroy := true;
G[2].DeleteOnDestroy := true;

finally
G[2].Free;
G[1].Free;
F[2].Free;
F[1].Free;
InFile.Free;

end;
RenameFile(MergedFileName, aOutFile);

end;

➤ Listing 3:
The external mergesort.

62 The Delphi Magazine Issue 63

procedure SelectionSort(aBlock : pointer; aRecCount :
integer; aRecLen : integer; aCompare : TaaMergeCompare);

var
i, j : integer;
TempRec : pointer;
iPtr : PChar;
jPtr : PChar;
MinPtr : PChar;

begin
GetMem(TempRec, aRecLen);
try
iPtr := aBlock;
for i := 0 to (aRecCount - 2) do begin
MinPtr := iPtr;
jPtr := iPtr;
for j := succ(i) to pred(aRecCount) do begin
inc(jPtr, aRecLen);
if (aCompare(jPtr, MinPtr) < 0) then
MinPtr := jPtr;

end;
Move(iPtr^, TempRec^, aRecLen);
Move(MinPtr^, iPtr^, aRecLen);
Move(TempRec^, MinPtr^, aRecLen);
inc(iPtr, aRecLen);

end;
finally
FreeMem(TempRec);

end;
end;
function SplitFileFixedBlock(aInFile : TStream;
aF1 : TStream; aF2 : TStream; aRecLen : integer;
aCompare : TaaMergeCompare) : integer;

const
FirstFile = false;
SecondFile = true;

var
Block : pointer;

F : array [boolean] of TStream;
DestFile : boolean;
BlockSize : integer;
BytesRead : longint;
RecCount : integer;

begin
F[FirstFile] := aF1;
F[SecondFile] := aF2;
Block := nil;
try
Result := (128 * 1024) div aRecLen;
BlockSize := Result * aRecLen;
GetMem(Block, BlockSize);
{we start out with the first output file}
DestFile := FirstFile;
{read the first block}
BytesRead := aInFile.Read(Block^, BlockSize);
RecCount := BytesRead div aRecLen;
{in a loop sort the block and write it to the output
file, alternating between output files; the loop stops
when we can't read any more blocks}

while (RecCount <> 0) do begin
{sort the block}
SelectionSort(Block, RecCount, aRecLen, aCompare);
{write out sorted block to current output file}
F[DestFile].WriteBuffer(Block^, BytesRead);
{switch output files}
DestFile := not DestFile;
{read the next block}
BytesRead := aInFile.Read(Block^, BlockSize);
RecCount := BytesRead div aRecLen;

end;
finally
if (Block <> nil) then
FreeMem(Block);

end;
end;

➤ Listing 4: The improved
block-oriented split routine.

The first optimization is in the
SplitFilesFixed routine: instead of
creating runs of 2 records by read-
ing records in pairs, read the
records in blocks of several and
quicksort them before writing
them out into the two files F1 and
F2. That means there will be many
fewer calls to MergeRunsFixed since
we’ll start out with the original
split files having larger run lengths.

For example, if we have 64-byte
records, we could read them in
blocks of 64, say (ie, 4,096 bytes),
quicksort them (or selection or
insertion sort them, there’s not
that many after all) and write them
out to files F1 and F2 alternately.
We would then start out calling
MergeRuns with files containing run
lengths of 64 instead of 2. We’d
save 6 calls to MergeRuns (for run
lengths 2, 4, 8, and so on), which
translates to saving 6 complete
reads through the set of records, a
valuable saving.

The other optimisation we could
do is in reading the records from
our temporary files in blocks
instead of one at a time. This would
in essence cache the records. For
Windows this probably wouldn’t
help too much: a better option
would be to signal the operating

system that we want to sequen-
tially read the file and the system
will be on our side, caching for us.
That way we don’t have to write a
lot of file caching code.

The changes to SplitFileFixed
are shown in Listing 4. As you can
see, instead of reading the records
singly, we read them in blocks. We
size the blocks such that each is
roughly 128Kb in size and contains
an integral number of records. We
pass this run length back to the
caller so it knows where to start
when calling MergeRunsFixed. List-
ing 5 shows the minor change
required. I decided to use a selec-
tion sort this time, although a
quicksort might be faster. Selec-
tion sort works very well when the
cost of comparing two items is
much smaller than the cost of
exchanging them into their respec-
tive places.

Another test: this time sorting
400,000 random 64-byte records
took 150 seconds or 2.5 minutes: a
vast improvement, showing that
removing a lot of the file access
makes great sense.

I’ll Be Back
By the way, I noticed that as I timed
various tests that the tests tended
to get longer and longer. The disk
tended to thrash a little more. I’m
guessing this is due to the increas-
ing fragmentation of the contents
of my disk as I experimented. I’ll
test this theory when I have more
time; for now, Our Esteemed
Editor is champing at the bit to get
this article typeset and I can’t
extend my deadline any more!
I hope you enjoyed this foray into
external mergesort: it’s an impor-
tant algorithm that many don’t
know and yet should be a staple in
our programming toolbox.

Julian Bucknall is looking forward
to being more organized, having
finished a stint in the play that can
be briefly heard at the end of
‘I Am The Walrus’. Email Julian at
julianb@turbopower.com. The
code that accompanies this article
is freeware and can be used as-is
in your own applications.
© Julian M Bucknall, 2000

{split the input file into two files containing runs}
F[1] := TaaTempFileStream.Create(Path, fmOpenReadWrite);
F[2] := TaaTempFileStream.Create(Path, fmOpenReadWrite);
RunLen := SplitFileFixedBlock(InFile, F[1], F[2], aRecLen, aCompare);

➤ Listing 5: The minor change required to call SplitFileFixedBlock.

	Yesterday
	Help!
	What Goes On
	Tomorrow Never Knows
	I Should Have Known Better
	I’ll Be Back

